Pseudodifferential Operators on Prehomogeneous Vector Spaces
نویسندگان
چکیده
منابع مشابه
Free Divisors in Prehomogeneous Vector Spaces
We study linear free divisors, that is, free divisors arising as discriminants in prehomogeneous vector spaces, and in particular in quiver representation spaces. We give a characterization of the prehomogeneous vector spaces containing such linear free divisors. For reductive linear free divisors, we prove that the numbers of geometric and representation theoretic irreducible components coinci...
متن کاملPseudodifferential operators and weighted normed symbol spaces
In this work we study some general classes of pseudodifferential operators where the classes of symbols are defined in terms of phase space estimates. Résumé On étudie des classes générales d’opérateurs pseudodifférentiels dont les classes de symboles sont définis en termes d’éstimations dans l’espace de phase.
متن کاملCOMPUTATION OF CHARACTER SUMS AND APPLICATIONS TO PREHOMOGENEOUS VECTOR SPACES 1 with an appendix ” L - FUNCTIONS OF PREHOMOGENEOUS VECTOR SPACES
For an arbitrary number field K with ring of integers OK , we prove an analogue over finite rings of the form OK/p of the Fundamental Theorem on the Fourier transform of a relative invariant of prehomogeneous vector spaces, where p is a big enough prime ideal of OK and m > 1. In the appendix, F. Sato gives an application of the Theorems 1.2 and 1.5 (and Theorems A, B, C in [4]) to the functiona...
متن کاملComposition and Spectral Invariance of Pseudodifferential Operators on Modulation Spaces
We introduce new classes of Banach algebras of pseudodifferential operators with symbols in certain modulation spaces and investigate their composition and the functional calculus. Operators in these algebras possess the spectral invariance property on the associated family of modulation spaces. These results extend and contain Sjöstrand’s theory, and they are obtained with new phase space meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Partial Differential Equations
سال: 2006
ISSN: 0360-5302,1532-4133
DOI: 10.1080/03605300500455891